A comparative study of fluid-particle coupling methods for fully resolved lattice Boltzmann simulations

نویسندگان

  • Christoph Rettinger
  • Ulrich Rüde
چکیده

The direct numerical simulation of particulate systems offers a unique approach to study the dynamics of fluid-solid suspensions by fully resolving the submerged particles and without introducing empirical models. For the lattice Boltzmann method, different variants exist to incorporate the fluid-particle interaction into the simulation. This paper provides a detailed and systematic comparison of two different methods, namely the momentum exchange method and the partially saturated cells method by Noble and Torczynski. Three subvariants of each method are used in the benchmark scenario of a single heavy sphere settling in ambient fluid to study their characteristics and accuracy for particle Reynolds numbers from 185 up to 365. The sphere must be resolved with at least 24 computational cells per diameter to achieve velocity errors below 5%. The momentum exchange method is found to be more accurate in predicting the streamwise velocity component whereas the partially saturated cells method is more accurate in the spanwise components. The study reveals that the resolution should be chosen with respect to the coupling dynamics, and not only based on the flow properties, to avoid large errors in the fluid-particle interaction.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Evaluation of two lattice Boltzmann methods for fluid flow simulation in a stirred tank

In the present study, commonly used weakly compressible lattice Boltzmann method and Guo incompressible lattice Boltzmann method have been used to simulate fluid flow in a stirred tank. For this purpose a 3D Parallel code has been developed in the framework of the lattice Boltzmann method. This program has been used for simulation of flow at different geometries such as 2D channel fluid flow an...

متن کامل

Coupled Multiphysics Simulations of Charged Particle Electrophoresis for Massively Parallel Supercomputers

The article deals with the multiphysics simulation of electrokinetic flows. When charged particles are immersed in a fluid and are additionally subjected to electric fields, this results in a complex coupling of several physical phenomena. In a direct numerical simulation, the dynamics of moving and geometrically resolved particles, the hydrodynamics of the fluid, and the electric field must be...

متن کامل

Entropic Lattice Boltzmann Method for Moving and Deforming Geometries in Three Dimensions

Entropic lattice Boltzmann methods have been developed to alleviate intrinsic stability issues of lattice Boltzmann models for under-resolved simulations. Its reliability in combination with moving objects was established for various laminar benchmark flows in two dimensions in our previous work Dorschner et al. [11] as well as for three dimensional one-way coupled simulations of engine-type ge...

متن کامل

Coupling of Particle Simulation and Lattice Boltzmann Background Flow on Adaptive Grids

The lattice-Boltzmann method as well as classical molecular dynamics are established and widely used methods for the simulation and research of soft matter. Molecular dynamics is a computer simulation technique on microscopic scales solving the multi-body kinetic equations of the involved particles. The lattice-Boltzmann method describes the hydrodynamic interactions of fluids, gases, or other ...

متن کامل

A Coupled Lattice Boltzmann Method and Discrete Element Method for Discrete Particle Simulations of Particulate Flows

Discrete particle simulations are widely used to study large–scale particulate flows in complex geometries where particle–particle and particle–fluid interactions require an adequate representation but the computational cost has to be kept low. In this work, we present a novel coupling approach for such simulations. A lattice Boltzmann formulation of the generalized Navier–Stokes equations is u...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1702.04910  شماره 

صفحات  -

تاریخ انتشار 2017